
The electrostatic interaction between interfacial colloidal particles

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1985 J. Phys. A: Math. Gen. 18 L1055

(http://iopscience.iop.org/0305-4470/18/16/011)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 09:12

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/18/16
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 18 (1985) L1055-L1060. Printed in Great Britain 

LElTER TO THE EDITOR 

The electrostatic interaction between interfacial colloidal 
particles 

Alan J Hurd 
Sandia National Laboratories, Albuquerque, NM 87185, USA 

Received 19 July 1985 

Abstract. The electrostatic interaction between charged, colloidal particles trapped at an 
air-water interface is considered using linearised Poisson-Boltzmann results for point 
particles. In addition to the expected screened-Coulomb contribution, which decays 
exponentially, an algebraic dipole-dipole interaction occurs that may account for long- 
range interactions in interfacial colloidal systems. 

Interfacial colloids consists of particles dispersed on an interface between two fluid 
media and held there by surface tension. A particularly interesting example is the 
system of polystyrene latex spheres at an air-water interface, since in this case, the 
particles are highly charged and therefore strongly interacting. Ordered and disordered 
phases have been observed in this system (Pieranski 1980), leading to speculations 
that interfacial colloids may be a model system for studying the physics of condensed, 
two-dimensional phases, such as melting, especially since the interaction appears to 
be long-range, extending over many Debye screening lengths. By varying the screening 
length via the ionic strength of the substrate, attractive van der Waals interactions can 
be made to dominate, allowing a wide variety of two-dimensional phenomena to be 
investigated. For example, diffusion-limited aggregation in a plane was recently studied 
by Hurd and Schaefer (1985). 

Pieranski suggested on intuitive grounds that each charged particle and its asym- 
metric counterionic cloud form a dipole moment perpendicular to the interface, and 
that the particles interact through the air with an algebraic, dipolar force law. (Interac- 
tions propagating through the water substrate are screened by mobile ions, leading to 
an exponentially decaying force law.) A similar asymmetry effect was noticed by 
Jancovici (1982) in analysing a classical Coulomb plasma near a wall: along the wall, 
the pair correlation function exhibits a power-law decay attributable to non-vanishing 
electrical dipole interactions induced by the wall. Such soft potentials favour the 
formation of the proposed ‘hexatic’ phase (Halperin and Nelson 1978), through which 
the melting transition might be continuous in two dimensions, although simulations 
of the polystyrene-water system using algebraic potentials indicate a discontinuous 
transition (Kalia and Vashishta 1981). 

The purpose of this letter is to place the speculations concerning dipole-dipole 
interactions at large separations between interfacial colloidal particles on a firm 
theoretical basis, and to clarify the facts of electrostatic interactions. Other possibilities 
for important interactions involving surface deformations in the substrate (attractive 
dimples, etc) are not treated in this letter. 
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Stillinger (1961), in studying the discrete adsorbed charge effect, found an integral 
expression for the electrostatic interaction between point charges at an electrolyte 
interface by solving the linearised Poisson-Boltzmann equation. His expression is the 
starting point for this letter. It is shown here that the interaction energy is dominated 
by exponential behaviour at small separations and by algebraic behaviour at large 
separations. These regimes are also illustrated by direct numerical integration. 

The two major assumptions in Stillinger’s work are those of point charge and the 
linearisation of the Poisson-Boltzmann equation. (The use of the Poisson-Boltzmann 
equation itself might be questioned; however, ion-ion correlations should be negligible 
for the dilute solutions considered here.) The point charge assumption is applicable 
when the particles are separated by distances much larger than their radii, r >> a, which 
is just the desired limit. On the other hand, the linearisation assumption, which assumes 
that the electrostatic energy for a mobile ion in solution is everywhere much smaller 
than its thermal energy, e$<< kT, is not rigorously justified near the highly charged 
colloidal particles. Nevertheless, since this assumption often holds in the far field, the 
form of the potential can be calculated within the framework of the linearised theory, 
and any difficulties concerning the true potential can often be rectified by the use of 
an effective charge. These details, while important in many real problems, are ignored 
here in the interest of simplicity. 

Stillinger’s expression for the interaction between two particles at an electrolyte-air 
interface, such as those in figure 1, is 

with 

x l o ( x )  dx 
(x2 + k2)”* + X / E  

y(k)  = I, 
where Ze is the total charge on each interfacial particle, r is the distance between 
them, k equals Kr where K - ’  is the Debye screening length, and E is the dielectric 
constant of water. The factor of two in ( l a )  arises from the fact that the effective 
dielectric constant at the interface is just the average of the two media, in this case 
water and air, ;(E + 1) = 4s. 

Because water has a large dielectric constant (=80), it is expedient to drop the 
term X / E  in the denominator, a procedure which yields the familiar screened-Coulomb 
interaction via the identity 

+ + 
+ +  + + K\+ / 

Figure 1. Schematic of charged particles at an electrolyte-air interface. The asymmetry of 
the counterionic clouds gives rise to electrical dipole moments that interact with long-range 
(power-law) forces. 
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(Similarly, for an infinitely dilute electrolyte, K + 0, a bare-Coulomb interaction emerges 
from ( 1  b).) In this limit of large E, all of the electric displacement field is captured 
in the substrate where screening by mobile ions takes place. 

The simplest approach to the full integral y (  k) is to expand the denominator in 
powers of E-'. The first term in the expansion is just the exponential screened-Coulomb 
term. The second term hints of more interesting interactions: it has an algebraic (r-') 
form for large particle separations. In fact, all of the terms of order E - "  decay 
algebraically when n is odd and exponentially when n is even. (The exponential and 
algebraic regimes are separated more cleanly below.) In view of the role played by 
screening ions, it is tempting to assign the algebraic interactions to fields propagating 
in the air and the exponential interactions to fields in the substrate. If this picture is 
true, then E- '  acts as a coupling constant for propagators in each medium. 

The important dipole-dipole contribution can be precisely extracted in one step 
by eliminating the radical form the denominator of ( l b ) ,  

where k" = k2/( 1 - E - ~ ) .  The first integral corresponds to the screened-Coulomb inter- 
action and the second to the dipole interaction as shown below. Adding and substract- 
ing k'' to the numerator of the second integral yields 

dx = lom Jo(x) dx  - k" lom JO(X) dx 

= 1 - ( ~ / 2 )  k'( Io( k') - Lo( k')), (4) 

where Io is the modified Bessel function of the first kind and Lo is the modified Struve 
function. The difference between these functions is tabulated in Abramowitz and 
Stegun (1972) where the asymptotic expansion is also listed, 

-+>+s+... . ) 2 1 1 1x3 
Io( k) - Lob)  - - ( 

T X X  x 

Hence, the integral in (4) for large separations is 

and the corresponding part of the electrostatic energy is obtained from ( la ) ,  ( l b ) ,  (3) 
and ( 5 )  

Udipole - 2 ( Z e / ~ ~ ) ~ r - ~ .  ( 6 )  
The effective dipole moment of each interfacial colloidal particle and its associated 
counterionic cloud can now be identified as 

(7) /l = K .  

Each dipole corresponds to charges *Ze separated by a distance ( & K ) - '  in a medium 
with dielectric constant E. Equation ( 6 )  differs from Pieranski's assumed interaction 
by a factor E - ' .  

It remains to be shown that the balance of the interaction energy is exponentially 
decaying and thus at large separations it becomes unimportant compared to the dipolar 
component. The remaining integral in (3) can be transformed into a rapidly converging 



L1058 Letter to the Editor 

series by expanding the denominator around the value x2+ k2, then integrating term 
by term, 

This last integral, which is of the Hankel-Nicholson type (Abramowitz and Stegun 
1972), is related to the modified Bessel function of the second kind K,, 

With these substitutions, the integral in (8) can be written as the absolutely convergent 
series 

where CY = ( E ' -  l ) - ' ~  1 .  The dominant exponential behaviour can be seen from the 
relation 

k1'2Km+l12(k) - (7r/2)'l2 exp(-k). ( 1 1 )  

(A more rigorous approach is to calculate upper and lower bounds for (10) by making 
appropriate replacements for the factorial expressions in order to obtain summable 
series. In particular, the upper- and lower-bounding series can be shown to be 
exponentially decaying.) Finally, the screened-Coulomb part of the interaction energy 
is found from equations ( l a ) ,  ( lb) ,  (3), (8), (10) and ( l l ) ,  

u~~~~~~~ - ~ [ ( z ~ ) ' / E ~ ] E ' ( E ~  - I ) - '  exp(-Kr). (12) 

The two distinct contributions to the function y(k)  in (4) and (12) can be seen 
graphically by integrating ( 1  b)  numerically, then plotting the results on log-linear and 
log-log scales. For calculational purposes, the integral was transformed into a series 
by splitting up the range of integration between the zeros of Jo(x) and performing 
each integral by Simpson's rule. The resulting alternating-sign series was terminated 
after 20 terms, and the remainder was estimated by Euler's transform (Abramowitz 
and Stegun 1972) using the last 10 terms. Accuracy was not characterised thoroughly, 
but by comparing with the large E limit in (2), six-digit accuracy was routinely obtained. 
The results for E = 80 are plotted in figures 2 and 3, showing the exponential and 
algebraic behaviour, respectively. 

Above K r  = 10, the interaction is clearly dominated by the dipole-dipole term, 
which agrees with the relative magnitudes of the asymptotic forms 

-5  E K  r e ~ p ( - k r ) l ~ , = ~ ~ = 0 . 3 6 3 .  Ucoulomb 2 2 

Udipole 

Pieranski's observations indicate strong interactions occurring at 10 p m  separations, 
and, since K - I  ~ 0 . 7  p m  in distilled water, ~r is of the order of 14, well into the 
dipole-dipole regime. Moreover, for interfacial particles, even the screened-Coulomb 
interactions are stronger than for effects mentioned earlier. Whether the two-body 
potential, or more significantly the potential of mean force, is comparable to kT at 
these large separations depends largely on the charge of the floating particles. For 
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Figure 2. Interaction integral y (  K r )  on log-linear scales. The exponential behaviour, 
characteristic of a screened-Coulomb interaction, is evident for small separations. The 
dielectric constant of the substrate is taken to be that of water, E = 80. 

log xr  

Figure 3. Interaction integral y ( K r )  on log-log scales. Using the same results as in figure 
1, the algebraic behaviour from dipole-dipole interactions is revealed for large separations. 

Kr = 10, the charge must be about 2 = 5 x lo3 for the dipole-dipole energy to be equal 
to kT. Although only a fraction (two thirds, say) of the particle’s surface is wetted, 
this charge is not unreasonable. In the light of these findings, it is not surprising to 
find quite long-range repulsive interactions in charged interfacial colloidal systems. 
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